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1. Introduction 

A high-energy-density material (HEDM) must meet multiple various performance 
and material properties before selection for inclusion in a munition. These 
properties range from critical performance properties, such as heats of formation 
and crystalline densities (key for determining detonation and propellant 
performance), to melting points, compatibility with other formulation materials, 
sensitivities to insult, and environmental impact. While most research has focused 
on heats of formation and densities, researchers have begun investigating whether 
models can be developed for the prediction of other properties. In this report, we 
will present successes and failures for several properties. 

2. Crystal Densities 

Beginning with crystalline densities, there have been numerous approaches to 
predict the density without any experimental knowledge of the system under study. 
These methods can be broken into 2 main camps: those based on building full  
3-dimensional (3-D) representations of the crystal (ab initio crystal prediction) and 
those based on models using only the information obtained from a single isolated 
molecule (molecular volumes). Both of these methods have been summarized in 
Rice et al.1 and both have demonstrated some success. 

While ab initio crystal prediction methods can provide both predicted densities and 
X-ray spectra, these methods are usually computationally intensive and/or typically 
require the use of classical force fields, which must be constructed and/or tested for 
the molecular system of interest. For a more recent series of review articles on 
crystal structure prediction methods, see Atahan-Evrenk and Aspuru-Guzik.2 As 
only the density is required for use in predicting performance properties, we shall 
focus on methods yielding solely the density. In our earlier work,3 we initially 
correlated the crystal density to a simple functional: 

 𝜌𝜌 = 𝑀𝑀
𝑉𝑉𝑀𝑀

 , (1) 

where M was the molecular mass of the single molecule and VM was the volume 
inside the 0.001 au isosurface of electron density surrounding the molecule, which 
was calculated using the B3LYP/ 6-31G**4–6 density functional theory (DFT) as 
implemented in the Gaussian program package.7 Applying this method to 180 
neutral carbon-hydrogen-nitrogen-oxygen (CHNO)-containing molecules and 38 
high-nitrogen systems yielded root-mean-square (rms) percent deviations of 3.7% 
and 3.4%, respectively, compared to experiment. When applied to ionic molecules, 
the resultant predictions were worse, with a 6.6% rms disagreement from 
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experiment. While applying a correction based on the number of hydrogens in the 
moiety improved the results somewhat (4.8% rms error), later refinements to the 
model, founded on the works of Politzer et al.8,9 suggesting the addition of 
corrections based on electrostatic interactions, would provide an improved 
correlation. In reparametrizing equations from the Politzer et al. approach, we 
significantly improved the crystal density predictor with new rms errors of 2.7% 
for neutral molecules (on 38 test molecules) and 3.7% for ionic systems (on 48 test 
molecules).10 Equations 2 and 3 were used for the neutral and ionic density 
predictors.  

 𝜌𝜌 = 𝛼𝛼1 �
𝑀𝑀
𝑉𝑉𝑀𝑀
� + 𝛽𝛽1(𝜈𝜈𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 ) + 𝛾𝛾1. (2) 

 𝜌𝜌 = 𝛼𝛼 𝑀𝑀
𝑉𝑉𝑀𝑀

+ 𝛽𝛽∑�𝑉𝑉𝑆𝑆
+

𝐴𝐴𝑆𝑆
+� +  𝛾𝛾 ∑ �𝑉𝑉𝑆𝑆

−

𝐴𝐴𝑆𝑆
−� +  𝛿𝛿. (3) 

For the neutral molecule equation, 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2  is the total variance of the electrostatic 
potential mapped onto the 0.001 au isosurface of electron density of the isolated 
molecule; ν quantifies the degree of balance between the positive and negative 
potentials on the molecular surface. For the ionic molecule equation, 𝑉𝑉𝑆𝑆

+
 is the 

average of the positive values of the electrostatic potential on the 0.001 au 
molecular surface 𝑉𝑉𝑠𝑠, and 𝐴𝐴𝑆𝑆+ is the portion of the cation’s surface that has a positive 
electrostatic potential. Likewise, 𝑉𝑉𝑆𝑆

−
 is the average of the negative values of 𝑉𝑉𝑠𝑠, and 

𝐴𝐴𝑆𝑆− is the portion of the anion’s surface that has a negative electrostatic potential. 
These ratios are summed for each charge moiety in the total ionic system. The terms 
α1, β1, γ1, α, β, γ, and δ are all fitted constants.  

3. Solid Phase Heats of Formation 

The second of the 2 key performance properties, the solid phase heat of formation, 
traditionally has been a computational challenge. While there exist numerous 
methods of varying accuracy and computation cost for predicting the gas phase 
heats of formation, the lack of an adequate treatment of the cohesive forces binding 
the disparate molecules together into a solid has hampered the prediction of this 
property. The methods existent to date have relied mostly on fitted quantitative 
structure property relationships (QSPRs), correlating electronic structure properties 
to experimental data. In Rice et al.1, we illustrated a QSPR method for neutral 
molecules that displayed reasonable accuracy. However, we demonstrated there 
were no accurate predictive tools for ionic compounds. In 2009, Byrd and Rice11 
examined a host of different methods to compute the gas phase heats of formation 
along with different models to determine the lattice enthalpy, which, when added, 
will produce the desired solid phase heat of formation. Two methods were used to 
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compute the gas phase heats of formation, the very accurate (and computationally 
expensive) G3MP2B3 theory12,13 and a more empirical scheme, while 6 methods 
were used to determine the lattice enthalpies. These methods ranged from extended 
lattice summations (requiring the crystal structure, a necessary property obtained 
through computationally costly crystal structure prediction calculations for notional 
compounds) to QSPR methods.  

The most recognized QSPR model to calculate lattice enthalpies used was designed 
by Jenkins et al.14–16 and was fitted to large molecular anions but composed mostly 
of small alkali metal and alkaline earth cations (Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba). 
This restricted parameterization is of concern when applied to ionic high-nitrogen 
materials, as most of the anions are not monoatomic species. Fortunately, there 
exists a reparametrized version of the Jenkins method for the 1:1 salts, developed 
by Gutowski et al.,17 that uses the same functional form but corrects this deficiency 
in the original fitting set. Both of these models have an inverse cube root 
dependence on the formula unit volume, which can be computed as described 
above. 

The method determined to yield the most accurate results for the condensed phase 
heat of formation was the combination of G3MP2B3 theory (gas phase heat of 
formation) with the Gutowski method of calculating the lattice energy (24 kcal/mol 
rms error), but this method is restricted to 1:1 salts. For all other salts, the 
G3MP2B3 theory with the Jenkins method provided results that were within 
5 kcal/mol rms error of the more accurate lattice summation methods 
(36.6 kcal/mol vs. 31.2 kcal/mol rms errors). This is fortunate, as the Jenkins and 
Gutowski models require no experimental information, can be rapidly obtained 
with very modest computational resources, and produce results that are 
approximately as accurate as those obtained using more computationally costly 
methods that explicitly calculate interatomic interactions in an ionic crystal. 

Byrd and Rice11 also showed the effect on predicted lattice enthalpies using formula 
unit volumes based on the refined densities using electrostatic potential 
information. Using the updated crystal density predictors, and then converting these 
to formula unit volumes (by dividing the formula unit mass by the updated predicted 
density), we observed minimal change in the predicted lattice enthalpies, on the order 
of 1.4 kcal/mol average absolute difference.9 This was expected; overall, the volume 
changes were minor, and once filtered through an inverse cube root (the functional 
form of the Jenkins method), the resultant differences were minute.
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4. Prediction of Vulnerability, Hazard, and Other Properties 

While there has been significant focus on the prediction of performance properties 
of high-nitrogen materials, these are not the only factors to consider when pursuing 
novel energetic materials. Other concerns of note are sensitivity to insult (e.g., 
impact, friction, electrostatic discharge), physical properties (e.g., melting points), 
environmental impact, and toxicity as well as compatibility with formulation 
ingredients. These additional properties, however, usually involve complex, 
dynamic processes that do not lend themselves well to “simple” predictive 
techniques as illustrated previously. A prime example of this is the prediction of 
impact sensitivity of energetic materials. There exists scores of proposed methods 
to predict impact sensitivities through the correlation of molecular or material 
properties, yet to date, none has demonstrated stellar success. Our own efforts in 
this field have ranged from semi-empirical QSPR-based methods (8 descriptor 
multivariate linear regression equations yielding an R2 of 0.75)18 to attempted 
correlations of electrostatic properties on the partitioned quantum mechanical 
electron density derived from Bader’s atoms-in-molecules technique.19,20 For these 
studies, while many correlations were attempted, and several approximate 
correlations were determined, all exhibited limited predictive capability, and no 
accurate quantitative correlations were found. To date, there exists no accurate, 
universal predictive methodology for sensitivities for energetic materials. 

Another property that has garnished considerable attention is the prediction of the 
melting point of a material. The most common approach used is that for QSPRs, 
which have demonstrated some successes for this challenging problem, some of 
which were developed for conventional energetic materials.21 In a recent paper,22 
Morrill and Byrd use the AM1 semi-empirical quantum mechanical method to 
design multivariate linear relationships based on the experimental melting points 
for over 100 high-nitrogen compounds. The models resulting from this study had 
R2 values of 0.94 and 0.90 on the test sets for the 2 QSPRs developed (rms errors 
of ±7.0 and ±8.8 °C, respectively), which rank among the best melting point models 
published for energetic materials. 

5. Novel Polynitrogen Species and Novel High-Pressure Phases 
of Nitrogen 

The relatively modest computational resources required to obtain basic molecular 
information using DFT have resulted in a proliferation of computational studies of 
isolated high-nitrogen molecules and will not be reviewed here. However, the 
advances in high-performance computing, scalable DFT codes, and crystal 
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structure prediction algorithms have allowed theoretical explorations of structure 
and behavior of novel high-pressure phases of polymeric nitrogen since 
“Computational Aspects of Nitrogen-Rich HEDMs”1 was published. One of us 
performed quantum-based molecular dynamic (QMD) simulations in which a 
shock wave was initiated into a long 3-D filament of cubic gauche nitrogen  
(cg-N)23 through flyer plate impact. The shock response of the filament was quite 
different from that which we observed in QMD simulations of the shocked 
conventional energetic material pentaerythritol tetranitrate (PETN). In PETN, we 
observed heat release reactions directly behind the shock front, while in the shocked 
cg-N simulations, a series of energy-absorbing phase transformations and 
spontaneous defect formations occurred immediately behind the shock front. The 
decomposition of the polymeric matrix occurred at the far edge of the filament 
opposite to the traveling shock front; the heat generated in this decomposition did 
not contribute to driving the front.  

A follow-up effort by Beaudet and Mattson24 focused on attempts to generate 
ambient pressure amorphous polymeric nitrogen condensed phases, known to exist 
at low temperatures up to 100 K.25 Generation of amorphous structures using 
standard simulated annealing methodologies and DFT was challenging, leading us 
to initiate the structure search using semi-amorphous parts of the highly defected 
shock region in the cg-N simulation. Thermal annealing and optimization led to the 
discovery of a novel low-pressure porous crystalline form of nitrogen. The study 
was also particularly useful in identifying defects as sources of instability in the 
crystal, information that could be used to guide stabilization efforts. Other unusual 
structures of pure all-nitrogen crystals have been theoretically explored, including 
a molecular crystal of N8 molecules, whose main crystal forces are weak van der 
Waals and electrostatics; this crystal is predicted to be metastable at ambient 
pressure.26 Crystal structure predictions of all nitrogen systems at terapascal (TPa) 
pressures produced several stable phases, with one surprising metallic phase 
consisting of N5 and N2 moieties and exhibiting ionic features and charge density 
distortions.27 Another group performed a crystal structure prediction search that 
produced an N10 cage-like diamonoid structure stable at pressures above 
260 gigapascals (GPa).28 

Heteroatomic mixtures of polymeric nitrogen have also been explored to increase 
stability and otherwise optimize material properties. Polymeric nitrogen forms are 
found for compressed systems of various hydrogen-nitrogen mixtures,29–31 sodium 
azide,32,33 CO with N2,34,35 and N2O36. Polymeric nitrogen has also been 
encapsulated within nanotubes, both carbon37 and silicon carbide.38 Finally 
nanotube crystals of nitrogen-nitrogen-oxygen (NNO) and nitrogen-phosphorous-
oxygen (NPO) were found through crystal structure prediction methods.39 While 
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the NNO extended solid is not stable at ambient pressure, the NPO crystal was 
found to be stable at zero pressure and has an energy content 86% higher than 
1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane (HMX).  

6. Conclusions 

Increased interest in developing these novel high-nitrogen materials, particularly 
the novel high-pressure condensed phases of polymeric forms of nitrogen, will 
continue to benefit from theoretical predictions of structure and properties of the 
materials, particularly in providing guidance in design and stabilization.  
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List of Symbols, Abbreviations, and Acronyms 

6-31G** Pople’s Gaussian double-zeta polarized basis set with d polarization 
functions on each of the atoms Li through Ca and p polarization 
functions on H and He 

ν  balance parameter 

Σ  average electrostatic surface potential 

σ2  variance of electrostatic surface potential 

p  crystalline density 

AM1   semi-empirical method 

APG  Aberdeen Proving Ground 

ARL  US Army Research Laboratory 

au  atomic unit 

Ba  barium 

B3LYP  Becke 3 parameter exchange with Lee-Yang-Parr correlation DFT 
functional 

Ca calcium 

cg-N  cubic gauche nitrogen  

CHNO  carbon-hydrogen-nitrogen-oxygen  

Cs  cesium 

DFT  density functional theory 

G3MP2B3 G3 variant that uses MP2 instead of MP4 for the basis set extension 
corrections and uses the B3LYP structures and frequencies instead 
of the Hartree-Fock values 

GPa  gigapascal 

HEDM  high-energy-density material 

HMX  1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane 

K  potassium 

kcal/mol kilocalories per mole (unit of energy) 
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Li  lithium 

M  molecular mass 

Mg  magnesium 

Na  sodium 

NNO   nitrogen-nitrogen-oxygen 

NPO  nitrogen-phosphorous-oxygen  

PETN   pentaerythritol tetranitrate 

QMD   quantum-based molecular dynamics 

QSPR   quantitative structure property relationships 

R2  coefficient of determination 

Rb  rubidium 

Sr  strontium 

TPa  terapascal 

rms  root mean square 

V  electrostatic potential 

VM  volume inside the 0.001 au isosurface of electron density 
surrounding the molecule
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